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SUMMARY 
An adaptive grid solution procedure is developed for incompressible flow problems in which grid refinement 
based on an equidistribution law is performed in high-error-estimate regions that are flagged from a 
preliminary coarse grid solution. Solutions on the locally refined and equidistributed meshes are obtained 
using boundary conditions interpolated from the preliminary coarse grid solution, and solutions on both the 
refined and coarse grid regions are successively improved using a multigrid approach. For this purpose, 
suitable correction terms for the coarse grid equations are derived for all variables in the flagged regions. 
This procedure with Local Adaptation, Multigridding and Equidistribution (LAME) concepts is applied to 
various flow problems to demonstrate the accuracy improvements obtained using this method. 
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INTRODUCTION 

This paper deals with the development of a computationally efficient solution-adaptive grid 
procedure for incompressible flows. In a solution-adaptive grid procedure the grid points move 
dynamically in response to the evolving solution in order to equidistribute a measure of the 
numerical error. Thus, as desired, grid points are always densely clustered in regions of high error 
estimates. 

The literature dealing with solution-adaptive grid procedures has recently been reviewed by 
Thompson.' In general, these methods can be broadly classified into two groups which will be 
referred to as the global refinement method and the local refinement method in this paper. Both 
methods attempt to refine the grid in the important regions but do so in different ways. 

In the global refinement method2-" all grid points participate in the adaptation process. A 
weighting function Wij which is proportional to a measure of the error is calculated at all points 
and the mesh size Asij adjusted such that Wij-Asij is nearly equal at every point in the domain. 
Thus, as desired, the mesh spacing As,, is small where the error measure Wij is large and therefore 
the resulting solution error is nearly equidistributed. In References 2-5 either the first or second 
derivative of the dependent variable or a combination of the two is used as the weighting function 
(or measure of the error). In Reference 5 the analogy between the driving forces represented by the 
weighting function and the tensional spring force was developed; this was extended by Nakahashi 
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and Deiwert,6 who introduced the idea of a torsional spring attached to each node in order to 
control grid skewness. Rai and Anders~n,~. Greenberg’ and Eiseman’O have proposed grid 
point movement to be controlled by forcing or weighting functions that either attract or repel grid 
points relative to each other. Recently Kim and Thompson” have considered two different 
approaches to global grid point redistribution. In the first approach the control functions in the 
elliptic Poisson equations for the grid are used to drive grid point movement by relating the 
control function to the pressure gradient. In the second approach a variational technique is used, 

In the local refinement method12-17 a somewhat different approach towards the same end is 
adopted which involves refinement only in certain subregions. Berger and Jameson’ and Phillips 
and SchmidtI3 both advocate flagging rectangular regions with high truncation error estimates 
calculated from a preliminary solution and then uniformly subdividing the flagged regions. A 
more accurate solution is then obtained in the flagged regions. Berger and OligerI4 and 
Skamarock et al.” follow a similar approach to that in Reference 12 but allow for multiple, 
rotated, overlapping fine grids and update the coarse grid solution by the appropriately 
interpolated fine grid values at each step. Thompson and FerzigeP and Acharya and 
Moukalled” have both incorporated the ideas of multigrid calculations together with adaptive 
gridding. In Reference 16 rectangular regions are flagged from a preliminary error estimate; the 
meshes in the flagged regions are then uniformly refined and multigrid calculations performed 
between the various grid levels. In Reference 17 a versatile procedure is presented with Local 
Adaptation, Multigridding and Equidistribution (LAME) concepts. Unlike other related studies, 
the LAME procedure permits the flagging of an arbitrarily shaped region in the computational 
domain; further, instead of refining the flagged region uniformly as in most other studies, it 
performs the refinement using an error equidistribution method. Thus each flagged region is 
refined in an optimal fashion. Various levels of flagged regions can be overlayed on the 
preliminary grid and multigrid-type calculations are performed until the desired level of accuracy 
is obtained. 

The LAME procedure has been presented in Reference 17 only for convection-diffusion-type 
problems. In this paper the method is extended to flow problems. This extension involves a 
number of important issues which are discussed in this paper. For example, to avoid checker- 
board pressure and velocity fields, a staggered grid is normally used for the velocity components. 
Adaptation on such a grid, therefore, implies redefining three different sets of grid points at each 
step. This can be very expensive and is an issue specific to flow field calculations. Other examples 
of issues that are specific to flow calculations include the derivation of corrector (or restriction) 
terms for the pressure Poisson equation (which is based on the continuity equation) and the need 
for conservative mass flux interpolation across the flagged region boundaries. These issues are 
discussed in detail in this paper. 

In the following sections the calculation procedure on a non-staggered grid is briefly de- 
scribed’* followed by a brief review of the LAME solution-adaptive grid methodology for 
convection-diffusion problems.” The extension of the LAME procedure to flow problems is 
described next followed by the application of this procedure on a number of test problems. 

CALCULATION ON A NON-STAGGERED CURVILINEAR GRID 

The solution of flow equations (conservation of mass and momentum equations) using SIMPLE 
(Semi-Implicit Method for Pressure-Linked Equations) algorithms’ is generally performed on a 
staggered grid to avoid checkerboard pressure and velocity fields. Thus in a two-dimensional flow 
field three sets of mesh positions (one each for the two components of velocity and the third for 
pressure) and associated metric quantities have to be calculated and stored. If grid adaptation is 
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performed, the grid changes at every step and therefore three sets of grid positions and metric 
quantities have to be calculated at each step. This makes the process computationally very 
intensive. To avoid this, a non-staggered grid arrangement is desirable, but the solution algorithm 
must be suitably modified to avoid checkerboard pressure and velocity fields. Such modifications 
have been presented in a few studies including those of HsuY2O Reggio and Camarero,21 Rhie and 
ChowZ2 and Acharya and Mouka1led.l8 

In this paper the modified algorithm called SIMPLEM (SIMPLE Modified) proposed by 
Acharya and Moukalled" will be used. In Reference 18 the SIMPLEM algorithm has been 
compared with some of the other algorithms (e.g. Reference22) and shown to have superior 
characteristics. For these reasons the SIMPLEM algorithm is used in this paper and is described 
briefly later in this section. 

Attention is now turned to a very brief description of the various steps in the calculation 
process. These steps are: grid generation, discretization of the conservation equations and the 
SIMPLEM solution algorithm. Only a brief discussion is given here since many of these details 
are documented elsewhere (see e.g. References 17-19 and 23). 

Grid generation 

of Poisson equationsz3 
The computational grid ( 5 , ~ )  is generated in an arbitrary physical domain by solving a system 

axcg - 2Pxg, + yx,, = - J ( x ~  P* + x,, Q* ), 

~ Y s c - ~ B Y < , , + Y Y ~ ~ , =  -J2(ycP*+y,Q*), 
where CI, B, y and J are metric quantities given by 

(3) 2 
U = X $  + Y ,  , B=xg x,+yt; Y,, Y=X: +yg, J =xg Y,-x,,Y~ 

and P* and Q* are control functions that can be chosen to provide denser clustering in certain 
specified areas. 

Anderson and Steinbrennerz4 have recast equations (1) and (2) into an error equidistribution 
law by relating P* and Q* to the local error estimate or weighting function. To do this, 
equations (1) and (2) are re-expressed by defining z" = J2P*/a and $= JZQ*/y, then substituting 
into equations (1) and (2) and finally eliminating $between the two equations. This leads to an 
equation that can be expressed with sl, the arc length along a line of constant q, as the dependent 
variable: 

z1 = [(el )< - 2(82 )Cl cot e3 - (81 )C ( 0 2  )q sin e3/(s2 (5)  
In the above equation 8, and 8, are the slopes of constant q and 5 curves and 8, is the angle of 
intersection. A similar equation can be derived for sz, the arc length along a line of constant t: 

(s2)lIlI + 11/1 (sz),, = 0. (6) 
If these equations for s1 and s2 are compared with the equidistribution laws along constant q 

and < lines, the relationship between z1 and $1 (and therefore P* and Q*) and the weighting 
functions W can be established. For example, along a constant q line the equidistribution law is 

(s1 )c W=f1 (Uh 
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which when differentiated with respect to < leads to 

Comparing equation (7) with equation (4) leads to 

7 ,  = W</ w; 
similarly, 

$1 = w,/ w. (9) 
Thus the solution of the conventional elliptic grid generation equations (1) and (2) with P* and 
Q* obtained from equations (8) and (9) leads to an equidistributed grid. This is the procedure 
adopted in this paper for performing grid adaptation during the calculation. The weighting 
functions W are a measure of the local error; how they are calculated is described later in this 
paper. 

Discretization of the conservation equations 

The conservation of x- or y-momentum can be expressed as 

( P G ,  4 -(r/J)(adt - B4,)lr + w 2 4  -U-/J )(rd, - B4<)ls = -JVP + J S ,  (10) 
where the dependent variable 6 denotes either u or v, G , / J  and G 2 / J  are the contravariant 
velocity components with G, and G ,  defined by 

GI = UY, - OX,, G ,  = V X ,  - U Y ~ ,  (1 1) 

and S, p and r denote respectively the source term, the fluid density and the diffusion coefficient. 
In order to reduce equation (10) to a discretization equation, the control volume approach is 

adopted in which the domain is subdivided into control volumes, each containing a grid point, as 
shown in Figure 1. Equation (10) is integrated on a typical control volume around grid point P 
(see Figure 1). This leads to an integral balance equation of the form 

CpG, d-(r/J)(a4r-Bd,) l~Avr-  CpG,4-(T/J)(a~c-Bd,)l,Avr 
+ CPG24 - (UJNY4,- Bd&45 - CpG24 - (~ /J) (Yd, -B9JlsA< 

= s, J A V K  -(Y,Pr-Y<Pq)PArA?l. (12) 

Figure 1. Curvilinear co-ordinate system in (a) physical space and (b) computational space 
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In the above equation 4, 4c and 4, at the control volume interfaces (e, w, n and s) are expressed in 
terms of the grid point values by using the power law approximation," which has been shown to 
be superior to the central difference, the upwind and hybrid schemes. The resulting algebraic 
equation for u has the form 

aiUp=agUE + & U w  + a G U N  + b! + b:,, (b;Pc Cr p,,)p, (13) 
where a:* ak, a&, a; and a; are the convection-diffusion coefficients for u, b! is the source term 
contribution, bEo is the contribution due to non-orthogonality and the last two terms denote the 
pressure gradient contribution. A similar equation can be derived for the u-velocity. 

Equation (13) can be re-expressed by dividing across by a; and denoting the resulting 
coefficients on the right-hand side (RHS) of the equation by uppercase letters. The equation can 
then be written as 

or 

UP = ti, + (BY P< + CY,P,,)P, (1 5 )  

(16) 
In the SIMPLEM algorithm of Acharya and Moukalled," p r  and p,, at grid point P in 

equations (15) and (16) are derived using a 2-65 and a 2- 61 centred difference scheme. 
Introducing equations (15) and (16), i.e. u = li + (B; pc + C; p,,) and u = 6 + (BU, pc + CV, p,,), in the 
definitions of the contravariant terms G, and G,, the following equations can be obtained: 

where ip represents the first three terms of the RHS of equation (14). Similarly, 

up = 6p + (BV, pc + CU, p,)p. 

where 

Denoting 

and, similarly, 

61 = ClY,-- CZX,, 2, = c2xc- ClY,, 

G1=61+&pg+~1p,,,  G2 = G, + E 2 p S  + B2 pc- (20) 

equations (17) and (18) can be written in an abbreviated form as 

To derive the pressure equation, G, and G2 from equation (20) are introduced into the discretized 
continuity equation given by 

( P G ~  Att)e -( PG, b h v  + (PG2At)n -( ~ G 2 A t ) s  =O- (21) 
Using centred differences for pc  and p,,, the following equation for pressure is obtained from 
equation (21): 
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where 

Solution algorithm 

The SIMPLEM algorithm consists of the following steps. 

1. Start with guessed fields u* and u*. 
2. Calculate the coefficient? of the-momentum equations and then determine ti a_nd 6. From 

these values determine G, and G, at the nodes and interpolate linearly to find G, and 6, at 
the interfaces. 

3. Calculate the coefficients of the pressure equation (equation (22)) and solve the resulting 
system of equations to get a new pressure field. 

4. Update GI and G, at the interfaces (equations (17) and (18)) using centred differences with 
the new pressure field. 

5. Recalculate the momentum equation coefficients and solve the momentum equations to get 
a new velocity field. 

6. Return to step 2 and repeat until a converged solution is obtained. 

It was shown in Reference 18 that SIMPLEM was robust and efficient and effectively suppressed 
checkerboard pressure and velocity fields. 

THE LAME SOLUTION ADAPTIVE GRID PROCEDURE FOR FLOW PROBLEMS 

In this section the adaptive grid procedure developed here for flow problems is described. The 
procedure is an extension of the LAME pro~edure'~ developed earlier by the authors for 
convection-diffusion equations. However, solution of the flow equations in an adaptive grid 
framework involves additional issues. 

In the adaptive grid procedure developed in this paper the grid is refined locally in flagged 
regions where the error estimate exceeds a specified threshold value. Compared to other reported 
studies, the present method has the advantage that the flagged region in the computational space 
where the preliminary calculations are being performed can be arbitrarily shaped (and not 
necessarily rectangular or made up of overlapping rectangles). More importantly, grid refinement 
in each flagged region is not done uniformly as in other studies but by an equidistribution law 
that clusters the points more densely in regions of higher error estimates within the flagged region. 
The solutions at different grid levels are successively improved using a multigrid method. In the 
discussion that follows, the local grid refinement using error equidistribution laws is described 
first followed by a description of the multigrid flow calculation procedure. Issues specific to flow 
calculations are included in this discussion. 

Local grid refinement using error equidistribution law 

Grid refinement in this procedure is based on error estimates calculated from a preliminary 
coarse grid solution. These error estimates are used firstly to flag important regions where the 
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mesh should be refined and secondly to guide the distribution of grid points in these regions using 
an error equidistribution law. 

The first step is calculating the error estimate for a dependent variable 4. This is done from 
a preliminary coarse grid solution by defining a weighting function W, for each dependent 
variable as 

(27) & = a1 J t V’4I + a2 I V 4  I’ + a3J I V t  * V q  I + a,J [(Vt)’ + (vq)’], 
where al , az, ag and ag are constants. The first two terms represent a measure of the truncation 
error, since the error estimate at any point is proportional to (AsYf(V4, V’4, . . . , Vn4), where 
n denotes the order of the differencing scheme. The last two terms in equation (27) represent grid 
orthogonality and smoothness and can be viewed as a measure of the geometric error arising 
from grid distortion. To define local regions where the grid should be refined, a normalized 
weighting function is defined as 

(28) @=cw,+ I)/( ~ 4 ,  max+ 1) 

and points are flagged if the normalized weighting function is greater than a preassigned value 
(typically 0-3-0-5). A flagged region is identified as a cluster of contiguous flagged points. There 
can be more than one such cluster and each cluster in the 5-v space can have an arbitrary shape. 
This is an important feature of this method and, unlike other competing methods, does not 
restrict the refinement to be only in rectangular regions. 

In each flagged region the grid is refined using an error equidistribution method. This is done 
by doubling the number of grid points in the flagged region and solving the Poisson equations 
for grid generation, equations (1) and (21, but with the control functions P* ( =a.?/J’) and 
Q* (= $/J ’) related to the weighting functions or error measures W, through equations (8) 
and (9). The resulting grid is non-uniform with a finer mesh in the regions where the weighting 
function values are higher. This approach of non-uniformly refining the mesh using an equi- 
distribution scheme, but only in locally important regions that can have an arbitrary shape in the 
computational domain, makes the present method very versatile and computationally efficient. 

If different variables need clustering in different regions, the use of an error measure based on a 
single variable will not provide a grid that is optimal for every variable. To resolve this problem, 
at each point the error estimate for each variable is computed and the largest of these estimates is 
selected at that point. Having calculated the largest error estimate at each point, they are then 
normalized. This procedure permits the grid to be defined based on the needs of all dependent 
variables. 

In using the equidistribution approach described above, the flagged region is essentially being 
mapped to a new computational space, say {’-q’ (see Figure 2). In performing this mapping, the 
boundaries of the flagged region (shown shaded in Figure 2) are appropriately divided into four 
parts and assigned as the (kin, {Lax, &,in and boundaries. This is illustrated in Figure 2 with 
1-2 and 4-3 corresponding to the tkin and {Lax boundaries and 1-4 and 2-3 corresponding to the 
?kin and qkax boundaries. Once the new boundaries are assigned, the number of grid points along 
each boundary is doubled and a preliminary grid is generated in the flagged region by solving 
equations (1) and (2). The values of P* and Q* on this preliminary grid are interpolated from the 
corresponding coarse grid values of P* and Q* and equations (1) and (2) are then solved to obtain 
the equidistributed mesh in the flagged region. This procedure can be extended further and taken 
to convergence by again interpolating the values of P* and Q* onto the new equidistributed mesh 
and again solving equations (1) and (2). This process can be repeated until the grid points undergo 
no further change in position. 
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Figure 2. Typical flagged region (shown shaded) in (a) physical space, (b) 6-q computational space and (c) ('-$ flagged 
computational space 

The above procedure for generating an equidistributed grid is repeated in each flagged region. 
Once the equidistributed mesh in each flagged region is obtained, the next step of obtaining the 
solution in each of these regions is initiated. 

Boundary conditions for the locally rejined regions 

The boundary conditions for the locally refined regions have to be interpolated from the 
coarser outer mesh in which the refined region is embedded. The accuracy of the solution in the 
refined region will depend on the accuracy of the interpolated boundary condition. Therefore 
both the solution accuracy on the outer mesh and the accuracy of the interpolation are important. 

For flow problems it is important that the interpolation should be such that it conserves mass 
across the zonal boundaries. The interpolated mass flow rates are needed in the pressure equation 
for the boundary control volumes in each flagged region. A simple conservative interpolation 
procedure is developed in this work. Figure 3 shows a flagged region boundary (AB) that is 
transformed, for example, to a tkin boundary. The boundary AB in the outer mesh is along both r- and q-co-ordinate lines. In the t'-q' space AB is along a line of constant 5' and contains twice 
as many points, distributed non-uniformly, compared to the number of points along AB in the 
t-q space. To show how this interpolation is done, consider the portion AC of the boundary 
(Figure 3) with a flow rate F,, across it in the t-q space. In the t'-q' space the flow rate across a 
fine grid interface along AC is given by FL, where 

F;=N,F, , ,  
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Figure 3. Boundary of flagged region in (a) physical space and (b) <’-q’ computational space 

and such that 

c F ; = c  N,F,=F,, 
k k 

where N ,  is the interpolating factor and for a simple linear interpolation is given by length ratios. 
Thus from equation (30) mass conservation is ensured during interpolation. In general, and as 
shown in Figure 3(b), if the boundary flow rates in the 5-1 space are denoted by F,, F,, F,, . . . , 
the interpolated flow rates in the c’-q’ space can be written as 

F ; = C  N k j F j ,  (31) 
j 

where N k j  depends on the order of interpolation. Once the mass flow rates across the fine grid 
boundaries have been interpolated, the normal velocity (u, or u) is calculated by dividing the 
interpolated mass flow rates by the corresponding flow area and the density. 

Within the flagged region, since a conservative differencing procedure is employed in discret- 
izing the continuity equation (equation (21)), the converged velocity field and the velocity field 
updated after the solution of the pressure equation at each iteration always satisfy local 
continuity. 

The tangential velocity component and other variables are interpolated by a simpler practice. 
The values at the corners of the coarse grid control volume faces along the flagged region 
boundaries are first calculated as the weighted average of the four neighbouring coarse grid 
points. Linear interpolation is then used between the coarse grid corner values to determine the 
fine grid point boundary values. 
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Multigrid calculations 

As noted earlier, the solution accuracy in the flagged regions will also depend on the accuracy 
of the outer grid solution. To improve the solution accuracy on the outer mesh, a multigrid-type 
approach similar in its essential concept to the FAS (Full Approximation Storage) algorithm 
described by Brandt" and VankaZ6 is used in this paper. In the multigrid method, calculations 
are done on different grid levels with prolongation from the coarse grid to the fine grid and 
restriction from the fine grid to the coarse grid. As in Reference 26, the prolongation operation is 
performed by some form of interpolation, but in this paper the interpolation is done only along 
the boundary of the refined flagged region and is followed by the solution of the conservation 
equations in the flagged region. The two operations together represent the prolongation step. For 
the restriction operation, special restriction operators from the fine to the coarse grid are derived 
in the overlapping flagged regions. Thus in this multigrid approach the solution V o  in the outer 
grid Ro is obtained first, and the outer grid solution is prolongated to the embedded refined grid 
a' by interpolating the boundary conditions for the refined grid from the outer grid solution and 
then obtaining the refined grid solution V'.  The solution is then prolongated to the next level of 
the refined mesh, R'. This process is continued to the finest mesh refinement level desired (0"). 
Once the solution in the finest mesh has been obtained, the solution process steps back to its outer 
mesh l2-l  and recalculates the solution with restriction or correction terms added to the outer 
grid equations in the fine grid region R". These correction terms are such that the resulting 
corrected solution V"- is equal to V" in the overlap region R". This process is continued until the 
outermost grid Qo is reached. This completes one prolongation sweep and one restriction sweep. 
The second prolongation sweep is then initiated, and at any refinement level i, since the outer 
solution V i -  is more accurate in view of the correction terms added in the previous restriction 
sweep, the boundary conditions interpolated along the boundaries of n' from Vi- l  will be more 
accurate and therefore the solution V' will be better than the solution in the previous pro- 
longation sweep. These sweeps can be continued to the desired levels of accuracy. 

In the present paper most of the results have been obtained with either one or two levels of 
refinement and four or five prolongation and restriction sweeps. This has been found to be 
sufficient for the problems studied in this paper. 

The coarse to fine grid information transfer in the prolongation operation has already been 
described in the previous section and consists of a suitable method for interpolating the boundary 
conditions. As noted earlier, conservative mass flux interpolation is very important for successful 
calculations. Attention is now turned to the restriction or correction operation that applies the 
fine grid solution V' to the coarse grid equations in 0' such that the resulting coarse grid solution 
V i - l  in Qi is equal to V'. 

In the discussion below the correction equations for the pressure and momentum are derived. 
The coarse or outer grid terms are identified by a superscript i- 1 and the fine grid terms by a 
superscript i. 

The correction equations for pressure are derived by requiring that the mass fluxes across a 
control volume face based on both the fine and coarse grid solutions must be equal. In 
mathematical terms this can be written as 

(32) Gi - Gi- 1 Gi - G i - l .  
1 -  1 Y 2 -  2 

Using equations (17) and (18), the above equations can be written as 

6: +(Bly , -B:x , )p:+(c ' ,y , -  c :x , )pc-  &-I =(B'; l y q -  Bi- 'x,>pt- 1 

+(c:- 1 y, - c:- 1X,)p;- (33) 
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6; + (Cix, - c: yJp6 + ( B l x t  -B: 6;- 1 =(Ci- lxc- c:- 'yc)pf- 
+ (B;- 1x< - B'; 'yt)pi- 1 .  (34) 

By adding the above two equations, integrating over a typical control volume and using central 
differences, the following corrector equation for the pressure is obtained 

(35) a;-lp;-l- i - 1  i-1 i-1 i-1 i-1 i-l+,;-l ps  i-1 +b'-' in Ri, 
-aE PE PW PN 

while the standard pressure correction equation (22) applies in the non-overlapping region 
Ri-l -Ri. In equations (33) and (34) the coefficients contain the discretized forms of B,y,-B,x,, 
Cly,,-C2x,, C,x,-C,y, and B,x,-Blyg. The source term bi-' is given by the sum of the left- 
hand sides of equations (33) and (34) and contains information transferred from the fine grid. 

The above equation can be derived in another way. If an operator L is defined as 

=(B, Y,- ~ 2 x , ) a , + ( ~ 1  Y, - C ~ X , , ) ~ , , + ( C ~ X ~ -  c, Y , v ,  + ( B ~ X {  - ~ , y , ) a ~ ,  (36) 
where a, and a,, denote a /d t  and a/dq respectively, since in the region R' it is desired that pi- =pi, 
the corrector equation that will yield this is 

(37) 
It can be easily shown that equation (37) leads to equation (35), while in the remaining region the 
equation 

(38) 

Li-lpi-l=Li-lpi in Ri. 

Li-lpi-l=bp in Qi-l-ni, 

with bp given by equation (25), can be shown to be equivalent to equation (22). 
The derivations of the corrector equations for the x- and y-momentum are similar to those of a 

scalar variable," with the exception of the pressure gradient term. However, by suitable 
manipulation these terms can be added to the total flux. Since 

- P x  = ( - YqP, + Y&/J = c - (YqP) ,  + (Y&J/J ,  

CPGl I4 - F / J ) ( q -  flu,) +Y,PIC + CPGzu - ( ~ I J ) ( Y u , - B ~ c ) - Y t P l ,  = 0. 

(39) 

(40) 

the x-momentum equation can be rewritten as 

Conservation of momentum flux on both the coarse and fine grids implies that the momentum 
fluxes based on the two solutions can be equated to each other, leading to 

CpGlu-(rlJ)(au5-Bu,)+y,Plt-' +cpG2u-(r/J)(Yu~-Bu~)-y~~1~-1 

= CPGl u-(r/J)(q-  Bu,)+y,plt + CpG2u -(l-IJ)(YU,- Bu,) -Y, PI:. (41) 

Since pi-' =pi (equation (37)), the pressure terms can be dropped and the remaining dis- 
cretization done as for equation(12), resulting in a correction equation for the x-momentum 
in a'. A similar correction equation for the y-momentum can be obtained. These correction 
equations are solved in R', while the conventional discretized momentum equations (equations 
(14) and (1 6)) are solved in Ri - - Qi. 

As for the pressure equation, the corrector equations for momentum can also be derived by 
using the equation Li- ui- = L'- ui in R', where L'- l is the appropriate discretized momentum 
operator. 

Overall algorithm 

The overall algorithm between two grid levels 0 and 1 can be summarized as follows. 
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1. Generate a preliminary grid in Ro in the domain by solving equations (1) and (2). Solve 
the conservation equations Lo$' =f on this grid. 

2. Calculate the normalized error estimate l& at each grid point; where F& is greater than a 
critical value, the grid point is flagged. Contiguous flagged points form a cluster and define a 
flagged region $2'. 

3. For each flagged region R' identify the new computational boundaries &,,, &,,,, <Lin and 
<kax. In each flagged region calculate the local values of P* and Q* using equations (8) 
and (9). Then compute the new equidistributed mesh in each flagged region by solving 
equations (1) and (2). 

Prolongation step 

4. Along the boundaries of each flagged region R' interpolate the outer coarse grid solution 4' 
to the inner fine grid boundary points. The new boundary values 4; can be interpreted 
as ZA 4 O ,  where 1; is the prolongation operator in the multigrid terminology. 

5. With the new interpolated boundary values 4; solve the conservation equation L' 9' =f on 
the refined grid in each flagged region R'. 

Restriction step 

6. Derive corrected or restricted conservation equations in the overlap region (equation (35) or 
(37) and similar equations for other variables). The complete set of corrected or restricted 
equations has the form 

L O ~ O = L O $ '  in a', (424 
LOl$P=f in RO-Q'. (433) 

The right-hand side of equation (42a) can be interpreted as f O + Zy( f '  - L'$ '), where is 
the restriction operator. Solve equations(42a) and (42b) for all variables to obtain the 
updated outer grid solution. 

7. Return to step 4 and repeat steps 4-6 until the desired level of accuracy is obtained. 

The above algorithm can be easily extended to larger numbers of grid levels. 

RESULTS AND DISCUSSION 

Four test problems are studied. The first deals with driven flow in a square cavity. This test 
problem is commonly solved in order to test the performance of a numerical method. In the 
second problem laminar isothermal flow past a backward-facing step is considered. The third and 
fourth test problems also deal with flow over a backward-facing step, but with heat transfer effects 
included. For all the problems the adaptive grid solution initiated on an N x N grid is compared 
with two fixed grid solutions, one on an N x N grid and other on an (N  + n) x ( N  + n) fixed grid 
that requires the same CPU effort as the adaptive grid calculation. The second comparison is 
more meaningful, since for the same computational effort it provides a comparison of the solution 
accuracy between the adaptive grid procedure and the fixed grid procedure. In all the cases 
considered the constants cti and a2 in equation (27) are set to unity while a3 and ctq are set to zero. 

Drivenj?ow in a square cavity 

velocity of the upper plate, the following dimensionless variables can be defined: 
The physical situation is shown in Figure 4. If L denotes the cavity dimensions and u, is the 

x = x/L,  y= YlL, u = u/us, I/= V I U S ,  P = p/pu:. (43) 
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Figure 4. Schematic diagram of driven cavity flow 

The dimensionless mass and momentum conservation equations are then given by 

v.u=o, (44) 
U .  VU = - P,+V2 UIRe, (45) 

U - V V =  -P,+V* V/Re, (46) 

where Re=pusL/p is the Reynolds number. A value of Re= 100 is used in this paper. 
The boundary conditions are zero velocities along all surfaces except the top plate, where U = 1 
and V=O. 

Calculations are initiated on an 11 x 11 grid and are performed for two values of &. 
For @=0.3 the original mesh (broken lines) and the refined mesh after the first level of 
refinement (solid lines) are shown in Figure 5. It can be seen that the flagged region is located in 
the upper half of the domain where higher gradients are expected owing to the moving wall. The 
flagged region is nearly rectangular and the refined mesh is nearly orthogonal. Since the gradients 
and curvatures do not change rapidly in this situation, the refined equidistributed grid is not 
highly non-uniform. Figure 6 shows the refined mesh for % = 04. Fewer grid points are flagged 
owing to the higher error level specified for flagging a point. The flagged region is seen to be a 
non-rectangular, irregularly shaped domain, and it is for this reason that the case F$ = 04 is 
included here in addition to the % = 0-3 case. The <kin and <A, boundaries have been chosen to 
be AB and CD respectively, and correspondingly AC and BD are the ?kin and q,,,, boundaries. 

Figure 7 shows the U-  and V-velocities along the vertical centreline (x /L=O.5)  and Figure 8 
shows the velocity profiles along the horizontal centreline ( y / L  = 0.5). The ‘correct’ solution for 
purposes of comparison is taken to be that of B~rgraff.~’ In addition to Burgraff’s solution, three 
other solutions are shown. These are the fixed grid solution on an 11 x 1 1 grid, the adaptive grid 
solution initiated on an 11 x 11 grid and a 20 x 20 fixed grid solution that requires the same CPU 
effort as the adaptive grid. The results clearly indicate that the adaptive grid solution initiated on 
an 11 x 11 grid is superior to the 11 x 11 fixed grid solution and comparable to the 20 x 20 fixed 
grid solution. What is particularly noteworthy is that the adaptive grid solution in the lower half 
of the domain (the non-flagged region) is superior to the fixed grid (1 1 x 11) solution even if the 
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0.0 0.2 0.4 0.6 0.8 1.0 
x /L  

Figure 5. Mesh for driven cavity flow; Re=100, w+=0.3. Note: broken lines (---) represent initial coarse grid (4); 
solid lines (-) represent adapted grid after first level of refinement (Q,) 

two grids in this region are the same. This demonstrates the effectiveness of the multigrid 
procedure in reducing errors in the outer grid. 

Figure 9 shows the velocity profiles along the vertical centreline for @=0.4 and exhibits 
similar features to those observed in Figures 7 and 8. In making this comparison it is important to 
stress that adaptive grid results are being obtained on a curvilinear non-orthogonal mesh and are 
being compared with fixed grid results obtained on a Cartesian orthogonal mesh. Calculations on 
a non-orthogonal mesh are intrinsically less accurate because of the discretization approxima- 
tions required for the metric tensors such as a, 8, y and J appearing in equation (12). Despite this, 
the adaptive grid solution is superior, and if it were compared with a non-orthogonal curvilinear 
fixed grid calculation, it is expected to be even better. 

Isothermal flow over a backward-facing step 

Separated flows over backward-facing steps arise in many practical situations such as flow in 
electronic passages, flow in combustors, flow in ribbed a heat exchangers, etc. Isothermal laminar 
flow over a backward-facing step is considered here, as the second test problem, and results are 
compared with the experimental data of Armaly et aL2* 

The schematic diagram of the physical situation is shown in Figure 10. The step height s and 
the channel height h are chosen to match the values in Reference 28. The computational domain 
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Figure 6. Mesh for driven cavity flow; Re= 100, @=0.4. See note in Figure 5 
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Figure 10. Flow past a backward-facing step 

in the streamwise direction is 30s. The governing equations can be written as 

v .(pu) = 0, (47) 

v - (puu) = p x  + pvzu, (48) 

V*(puu)=p,+pV~u, (49) 
where u and v are the x- and y-velocity components and p is the pressure. The boundary 
conditions used at the inlet are a parabolic u-profile with a Reynolds number based on a 
hydraulic diameter of 2h equal to 389. At all the solid surfaces u and u are assumed to be zero and 
at the outflow all streamwise gradients are assumed to be zero. 

The cross-stream u-velocity profiles are plotted in Figures 11-13 at different x/s locations. The 
adaptive grid solution (initiated on an 11 x 11 grid) is compared with solutions obtained using the 
conventional grid scheme (on 11 x 11, 30 x 30 and 45 x 45 grids) and with experimental results. 
The 30 x 30 fixed grid solution takes the same CPU effort as the adaptive grid solution. The 
45 x 45 grid solution was obtained so that it will serve as a standard for comparison in addition to 
the experimental data. From these results it is clear that the adaptive grid solution is at least as 
good as, and is generally better than, the conventional grid solution obtained on a 30 x 30 grid 
that takes the same computer time. The improvement is not confined to the refined regions only 
(the refined region is not shown but is similar to that shown in Figure 14). In fact, profiles in non- 
refined regions show noticeable improvement. This has already been demonstrated in the first test 
problem. 

Flow over a backward-fncing s tepheat ing along the entire bottom surface 

This case is similar to the one considered previously but with the entire lower surface heated. 
The computational domain extends from 3s upstream of the step to 20s downstream of the step. 
In addition to equations (47)-(49), the energy equation is solved, 

v . ( p U e ) = ( p / p r ) ~ e ,  (50) 
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Figure 11. Streamwise velocity profile for isothermal flow past a backward-facing step; x/s=255 
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Figure 13. Streamwise velocity profile for isothermal flow past a backward-facing step; x/s= 8.52 
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Figure 14. Initial mesh (Q,, broken lines) and adapted mksh after one level of refinement (al, solid lines) for flow past a 
step 

where 8 = (T- T,,)/(T, - To) is the dimensionless temperature and Pr = pC, /k  is the Prandtl 
number. The temperature of the incoming flow is To while the temperature of the bottom surface 
is Tl . The velocity boundary conditions are as before while the temperature boundary conditions 
are 

at y = s  for O<xt3s, 

at x=3s for ObyGs, 
at y=O for 3s<x<20s, (51) 
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a0/dy=O at y = h  for all x, 

a0/ay=O at x=20s for all y. (52) 

At the inlet a parabolic profile for u and a cubic profile for 0, with 0 = 1 at y = s and 0 = 0 at y = h, 
are specified. For purposes of comparison a very fine grid solution on an 80 x 70 fixed grid is 
obtained. 

The initial grid (20 x 15) and the refined grid in the flagged regions are shown in Figure 14. It 
can be seen that the boundary layer region along the upper surface and the shear layer region in 
the lower part are flagged since these represent the high-gradient and high-curvature regions. The 
flagged region is seen to be non-rectangular in the 5-q space and the resulting meshes in the 
flagged regions are error-equidistributed. As noted earlier, these features of the present method 
represent significant advantages over other available methods. 

The streamwise velocity profile approximately one step height downstream of the step 
(x = 0.03 m) is shown in Figure 15. The recirculation region is characterized by negative velocities. 
The adaptive grid solution initiated on a 20 x 15 grid is compared with a 20 x 15 fixed grid and a 
35 x 35 fixed grid solution, the latter solution taking the same CPU effort as the adaptive grid 
calculation. It can clearly be seen that the adaptive grid solution is considerably superior to both 
the fixed grid solutions. This is clearly true in the recirculation region, even if this region is not 
flagged, and is because of the multigrid calculations that successively improve the outer grid 
solution. The velocity profile just downstream of the reattachment, at x/s approximately equal to 
5.5 (x =0.05 m), is shown in Figure 16 and again clearly indicates the higher solution accuracy of 
the adaptive grid solution compared to the fixed grid solution requiring the same CPU effort. The 
temperature profile at the same location (x=O.O5 m) is shown in Figure 17. Over most of the 
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Figure 15. Streamwise velocity profile; x=O.O3 m. Heating along both step and reattachment surface 
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Figure 16. Streamwise velocity profile; x=O.O5 m. Heating along both step and reattachment surface 
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Figure 17. Temperature profile; x = W 5  m. Heating along both step and reattachment surface 
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cross-stream domain the adaptive grid solution is considerably superior to both the 35 x 35 and 
20 x 15 fixed grid solutions. 
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Flow over a backward-facing step-heating downstream of the step 

This case is identical to the one just considered, with the only exception that the lower surface is 
heated only downstream of the step. Thus the only change is that the boundary condition given 
by equation (51) is replaced by 

at y = s  for O<x<3s, 
8=0  {at x=3s for o<y<s ,  

8=1 at y = O  for 3 ~ ~ ~ ~ 2 0 s .  (53) 
This case is included here to specifically show that feature of the adaptive grid method which 
permits it to automatically select, at a point, the dependent variable on which to base the 
calculation of the weighting function. Thus the grid is optimized for all dependent variables. 

The difference between this case and the previous one is that the reattaching flow will be colder 
in the present case since the step is not heated. Thus higher temperature gradients in the vicinity 
of the reattachment are expected compared to the previous case, and as a consequence it is 
expected that for the present case the flagged region will be larger near the reattachment location. 
This is confirmed by comparing Figure 18 with Figure 14. Near the reattachment point the 
weighting functions are controlled by temperature while near the top of the step, where the flow 
separates, the weighting function is based on velocities. Thus the needs of all dependent variables 
are accommodated. 

Figures 19 and 20 show the temperature profiles at x =0.05 m and 0.07 m respectively. At both 
streamwise locations the adaptive grid solutions initiated on a 20 x 15 grid are considerably better 
than the 20 x 15 fixed grid solution and the 35 x 35 fixed grid solution requiring the same CPU 
effort. This is true in both the flagged and non-flagged regions. 

Multiple levels of grid rejinement 

To illustrate the present procedure with multiple levels of grid refinement, the driven cavity 
problem is again chosen. Two levels of grid refinement were performed with a number of 
prolongation and restriction sweeps between each level. The three grids are shown in Figure 21 
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and denoted as RO, R1 and R'. As expected, at each level it is the upper part of the domain, near 
the moving wall, that is flagged. 

The vertical centreline u-velocity profile is shown in Figure 22. Results shown include those of 
B ~ r g r a f f , ~ ~  those obtained on an 11 x 11 fixed grid and two sets of adaptive grid solutions 
initiated on an 11 x 11 grid. The first set is based on one level of refinement (results shown earlier) 
and the second set on two levels of refinement. These results show improvement in the 
calculations with each successive level of refinement. The inset in the figure shows that the vertical 
centreline profile in R2 (the second refinement level) is clearly superior to the initial solution and 
the solution after the first refinement. 

CONCLUDING REMARKS 

A powerful solution-adaptive grid procedure is developed for flow problems. The procedure 
adapts only in locally important regions that are flagged from an initial solution, but grid 
refinement in these flagged regions is based on an error equidistribution law. Each of the flagged 
regions in the 5-q computational domain can have an arbitrary shape. The solution accuracy in 
both the outer grid and the grid in the flagged regions is successively improved using a multigrid- 
type procedure. The resulting solution-adaptive grid procedure is applied to a number of test 
problems and the improvement in results obtained is clearly demonstrated by comparing with 
fixed grid calculations that take the same effort. 
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APPENDIX: LIST OF SYMBOLS 

coefficients in finite difference equation 
source term due to non-orthogonality in finite difference equation 
source term in finite difference equation 
east face of a control volume, Figure 1 
east neighbour of grid point P, Figure 1 
constant for a given curve in the equidistribution law 
refer to contravariant velocity components 
Jacobian 
differential operator 
north face of a control volume, Figure 1 
north neighbour of grid point P, Figure 1 
pressure 
grid point, Figure 1 
control function 
control function 
south face of a control volume, Figure 1 
distance along an arc 
south neighbour of grid point P, Figure 1 
temperature 
dimensional and dimensionless velocity in x-direction 
dimensional and dimensionless velocity in y-direction 
adaptive grid solution at the ith refinement 
west face of control volume, Figure 1 
west neighbour of grid point P 
weighting function 
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w 

Y 
X 

normalized weighting function 
Cartesian co-ordinate 
Cartesian co-ordinate 

geometric parameter 
constants 
geometric parameter 
distances between grid points in the computational plane 
computational co-ordinate 
slopes of constant q and 5 curves 
angle of intersection, (81, 82)  

density 
dependent variable 
control functions 
control functions 
computational co-ordinate 
diffusion coefficient 
flagged region at the ith refinement 
distances between interfaces in the computational plane 

refer to control volume faces 
refer to grid points 
indicate differentiation with respect to x, y, q and 5 respectively 
maximum value 
minimum value 
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